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This work is a contribution towards the graphical display of 2D data when they are convex, monotone and
positive. A piecewise rational function in a cubic/cubic form is proposed, which, in each interval, involves
four free parameters in its construction. These four free parameters have a direct geometric interpretation,
making their use straightforward. Illustrations of their effect on the shape of the rational function are given.
Two of these free parameters are constrained to preserve the shape of convex, monotone and positive
data, while the other two parameters are utilized for the modification of positive, monotone and convex
curves to obtain a visually pleasing curve. The problem of shape preservation of data lying above a line
is also discussed. The method that is presented applies equally well to data or data with derivatives. The
developed scheme is computationally economical and pleasing. The error of rational interpolating function
is also derived when the arbitrary function being interpolated is C3 in an interpolating interval. The order
of approximation is O(h3

i ).

Keywords: spline; positivity; monotony; convexity; visualization

2000 AMS Subject Classifications: 68U05; 65D05; 65D07; 65D18

1. Introduction

In computer graphics environment, a user is always in need of interpolatory schemes which pre-
serve the shape of the data under consideration under different conditions and circumstances.
Positivity, monotony and convexity are the fundamental and important shapes which may arise
in the data coming from any scientific, business or social environment. For example, the pos-
itivity of data can be seen in monthly rainfall amounts, levels of gas discharge in certain
chemical reactions, progress of an irreversible process, resistance offered by an electric circuit,
volume and density, etc. These are some of the physical quantities which are always positive.
The non-negative graphical display of these physical quantities is meaningless. Monotony is
another important shape property. There are many physical situations where entities only have
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36 M. Sarfraz et al.

a meaning when their values are monotone. For example, dose–response curves and surfaces in
biochemistry and pharmacology [1], approximations of couples and quasi-couples in statistics
[1], empirical option pricing model in finance [1] and approximation of potential functions
in physical and chemical systems [1] are always monotone. Similarly, convexity has various
applications in different disciplines including telecommunication systems designing, nonlin-
ear programming, engineering, optimization, parameter estimation, approximation theory [3]
and others.

Shape control [19], shape design [5] and shape preservation [12–15] are important areas for
the graphical presentation of data. This paper pertains to the area of shape preservation. The
problem of shape preservation has been discussed by a number of authors. Brodlie and Butt
[2] preserved the shape of convex data by piecewise cubic interpolation. In any interval where
convexity was lost, they divided the interval into two subintervals by inserting extra knots into
that interval. The method that was presented was C1. They used the same technique in [4] to
preserve the shape of positive data. Fuhr and Kallay [6] used a C1 monotone rational B-spline of
degree one to preserve the shape of monotone data. Goodman, Ong and Unsworth [8] presented
two interpolating schemes to preserve the shape of data lying on one side of the straight line
using a rational cubic function. The first scheme preserved the shape of the data lying above
the straight line by scaling the weights by some scale factor. The second scheme preserved
the shape of the data by the insertion of a new interpolation point. Goodman [7] surveyed the
shape-preserving interpolating algorithms for 2D data. Gregory and Sarfraz [9] introduced a ratio-
nal cubic spline with one tension parameter in each subinterval, both interpolatory and rational
B-spline forms. They also analysed the effect of variation of tension parameter on the shape
of the curve. Hussain and Sarfraz [10] used a rational cubic function in its most generalized
form to preserve the shape of positive planar data. They used the same rational cubic function
in [11] to preserve the shape of monotone data. They developed data-dependent sufficient con-
ditions on free parameters in [10,11] to preserve the shape of planar data. Lamberti and Manni
[12] used cubic Hermite in a parametric form to preserve the shape of data. The step lengths
were used as tension parameters to preserve the shape of planar functional data. The first-order
derivatives at the knots were estimated by a tridiagonal system of equations which assured C2

continuity at the knots. Schmidt and Heβ [17] developed sufficient conditions on derivatives at
the end points of an interval to assure the positivity of the cubic polynomial over the whole
interval.

As has been discussed in the previous paragraph, positivity, monotony and convexity are impor-
tant shapes. These are independent shapes which are found inherited in data, under different
conditions and circumstances, in one form or the other. In the past, most of the authors had
discussed these shapes independently using different mathematical models and methodologies.
This paper intends to discuss the three important shapes within one mathematical model. It intro-
duces a C1 rational cubic function with four free parameters in its description. These four free
parameters have a direct geometric interpretation, making their use straightforward. Illustrations
of their effect on the shape of the rational function are given. Two of these free parameters are
constrained to preserve the shape of convex, monotone and positive data. The other two param-
eters are utilized for further modification, if needed, to obtain a visually pleasing curve. This
paper discusses the problem of shape preservation of positive data as well as its generalized form
when the data are lying above a straight line. It is also extended to the problems of monotony
and convexity preservation of data. Each of the positivity-, monotony- and convexity-preserving
schemes has been supported with practical demonstrations on various examples of data. It also
describes the details of the error of interpolation when the function being interpolated is C3 in an
interpolating interval.

This paper is different from a recently published paper of Sarfraz et al. [16] on the same subject.
These differences are elaborated as follows:
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International Journal of Computer Mathematics 37

# The paper of Sarfraz et al. [16] This paper

1. It is based on curves and surfaces It is based on only curves
2. It is about the visualization of only

positive data
It is about the visualization of positive,

monotone and convex data
3. The model, under discussion, used is

rational cubic by quadratic
The model, under discussion, used is rational

cubic by cubic
4. The rational function used has two

shape parameters in its description
The rational function used has four shape

parameters in its description
5. The two shape parameters are

constrained to preserve the shape of
only positive data

Two of the shape parameters are constrained to
preserve the shape of convex, monotone and
positive data, while the other two parameters
are utilized for the modification of positive,
monotone and convex curves to obtain a
visually pleasing curve

This paper, when compared with the paper of Sarfraz et al. [16], has done an additional study
of two different kinds of data shapes, namely monotone and convex. Thus, based on the above-
mentioned points, all the analytical studies, spline models, derivations, error analyses, and figures
are different and are explained in the following sections with details.

The remainder of this paper is organized as follows. In Section 2, the C1 rational cubic function,
with four free parameters in its description, is developed. Section 3 discusses the problem of shape
preservation of positive data. Section 4 discusses the positivity problem when the data are lying
above the straight line. The problems of monotony and convexity preservation of planar data are
described in Sections 5 and 6, respectively.An error analysis is developed in Section 7. This section
details the error of interpolation when the function being interpolated is C3 in an interpolating
interval. The paper is concluded in Section 8.

2. Rational cubic spline

Rational spline interpolation has an upper hand over polynomial spline interpolation as it can carry
more degrees of freedom in its description. This freedom can be utilized for various purposes and
objectives to be achieved in diverse real-life problems arising in different disciplines. This section
introduces a very general kind of rational cubic spline which has four free parameters in its
description. These four free parameters can be used for shape control and shape preservation.

Let {(xi, fi), i = 0, 1, 2, . . . , n} be the given set of data points defined over the interval [a, b],
where a = x0 < x1 < x2 < · · · < xn = b. The piecewise rational cubic function with four free
parameters is defined over each subinterval Ii = [xi, xi+1], i = 0, 1, 2, . . . , n − 1, as follows:

S(x) ≡ Si(x) = A0(1 − θ)3 + A1(1 − θ)2θ + A2(1 − θ)θ2 + A3θ
3

αi(1 − θ)2 + βi(1 − θ)2θ + γi(1 − θ)θ2 + δiθ2
, (1)

where

θ = x − xi

hi
and hi = xi+1 − xi.

Thus, we have transformed xi ≤ x ≤ xi+1 to 0 ≤ θ ≤ 1. The piecewise rational cubic function (1)
is C1 if it satisfies the following interpolatory conditions:

S(xi) = fi, S(xi+1) = fi+1, S(1)(xi) = di, S(1)(xi+1) = di+1, (2)
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38 M. Sarfraz et al.

where S(1)(x) denotes the derivative with respect to x and di denotes the derivative values estimated
or given. The imposition of interpolatory conditions (2) on the rational cubic function (1) yields
the following values of unknown Ai, i = 0, 1, 2, 3:

A0 = αifi,

A1 = (αi + βi)fi + αihidi,

A2 = (γi + δi)fi+1 − δihidi+1,

A3 = δifi+1.

These values of unknown Ai, i = 0, 1, 2, 3, reduce the rational cubic function (1) to the following
piecewise cubic spline:

S(x) ≡ Si(x) = pi(θ)

qi(θ)
, (3)

where

pi(θ) = αifi(1 − θ)3 + {(αi + βi)fi + αihidi}(1 − θ)2θ

+ {(γi + δi)fi+1 − δihidi+1}(1 − θ)θ2 + δifi+1θ
3,

qi(θ) = αi(1 − θ)2 + βi(1 − θ)2θ + γi(1 − θ)θ2 + δiθ
2.

It is interesting to note that when αi = δi = 1 and βi = γi = 2, the piecewise rational cubic spline
(3) reduces to a standard cubic Hermite spline.

2.1 Some observations

This section illustrates the effect of the free parameters αi, δi, βi and γi on the shape of a curve
both mathematically and graphically.

(1) Point tension: limβi→∞ Si(x) = fi and limγi→∞ Si(x) = fi+1; that is, for a given interval Ii =
[xi, xi+1], the free parameter βi controls the shape of the curve near the left-end point of
the interval and the free parameter γi controls the shape of the curve near the end point
of the interval. It is also observed that limγi−1→∞ Si−1(x) = limβi→∞ Si(x) = fi. Hence, in
two adjacent intervals, by simultaneously increasing the right-end free parameter of the left
interval and the left-end free parameter of the right interval, the rational cubic function (3)
converges to a single point (xi, fi).

(2) Interval tension: To observe the simultaneous increase in both the free parameters on the
rational cubic function (3), (3) is expressed as follows:

Si(x) = fi(1 − θ) + fi+1θ + R

qi(θ)
, (4)

where

R = (1 − θ)2θ{(αi + βi)fi + αihidi − αifi+1} + (1 − θ)θ2{(γi + δi)fi+1 − δihidi+1 − δifi}
− βifi(1 − θ)3θ − γifi+1(1 − θ)θ3 − (1 − θ)2θ2(βifi+1 + γifi).

From Equation (4), the following observation is made:

lim
βi ,γi→∞ Si(x) = lim

βi ,γi→∞

{
fi(1 − θ) + fi+1θ + R

qi(θ)

}
= fi(1 − θ) + fi+1θ .
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International Journal of Computer Mathematics 39

Figure 1. The rational cubic function (3) with αi = 1, βi = 2, γi = 100 and δi = 1.

Figure 2. The rational cubic function (3) with αi = 1, βi = 100, γi = 2 and δi = 1.

Hence, the simultaneous increase in both the free parameters βi and γi reduces the rational cubic
function (3) in the interval Ii = [xi, xi+1] to the straight line fi(1 − θ) + fi+1θ . These observations
are demonstrated graphically in Figures 1–4 for the data given in Table 1.

Figures 1 and 2 demonstrate the point tension effect caused by the free parameters γi and βi,
respectively. Figures 3 and 4 demonstrate the effect of the increase in the free parameters αi and
δi. Increment in the free parameter αi demonstrates the tension effect, whereas a simultaneous
increase in both the free parameters produces a visually pleasing curve.

3. Positive curve interpolation

The rational cubic spline, discussed in Section 2, carries four degrees of freedom in its description
in the form of shape parameters. This freedom can be utilized to achieve the positivity of the
data-interpolating curve when positive data are under consideration. This section is dedicated to
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40 M. Sarfraz et al.

Figure 3. The rational cubic function (3) with αi = 100, βi = 2, γi = 2 and δi = 1.

Figure 4. The rational cubic function (3) with αi = 100, βi = 2, γi = 2 and δi = 80.

Table 1. Positive data of the molal volume of a gas.

x 1 2 4 5 7 8 9

f 24.6162 2.4616 41.0270 4.1027 57.4378 5.7438 0.5744

orient the rational cubic spline, discussed in Section 2, to make it produce a positive curve. The
positive curve would be achieved by constraining the shape parameters. The objective would be
to utilize two parameters for the positivity-preserving constraints, while the other two parameters
would be kept free for shape control to enhance the positive curve further if needed.

Let {(xi, fi), i = 0, 1, 2, . . . , n} be the positive data defined over the interval [a, b] such that

fi > 0, i = 0, 1, 2, . . . , n.
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International Journal of Computer Mathematics 41

The piecewise rational cubic function (3) preserves positivity if

Si(x) > 0, i = 0, 1, 2, . . . , n − 1.

Si(x) > 0 if

pi(θ) > 0 and qi(θ) > 0.

qi(θ) > 0 if

αi > 0, βi > 0, γi > 0, δi > 0.

Using the result developed by Schmidt and Heβ in [17], the cubic polynomial pi(θ) > 0 if

(p′
i(0), p′

i(1)) ∈ R1 ∪ R2, (5)

where

R1 =
{
(a, b) : a >

−3fi
hi

, b <
3fi+1

hi

}
, (6)

R2 =

⎧⎪⎨
⎪⎩

(a, b) : 36fifi+1(a2 + b2 + ab − 3�i(a + b) + 3�2
i )

+3(fi+1a − fib)(2hiab − 3fi+1a + 3fib)

+4hi(fi+1a3 − fib3) − h2
i a2b2 > 0

⎫⎪⎬
⎪⎭. (7)

Since p′
i(0) = −2αifi + βifi + αihidi, p′

i(1) = 2δifi+1 − λifi+1 + δihidi+1. The relation (5) is
true when

(p′
i(0), p′

i(1)) ∈ R1,

or

p′
i(0) >

−3fi
hi

, p′
i(1) <

3fi+1

hi
.

This leads to the following constraints:

βi > −αihidi

fi
, γi >

δihidi+1

fi+1
, αi > 1.5 and δi > 1.5.

Furthermore, (p′
i(0), p′

i(1)) ∈ R2 if

φ(αi, βi, γi, δi)

= 36fifi+1[φ2
1(αi, βi) + φ2

2(γi, δi) + φ1(αi, βi)φ2(γi, δi) − 3�i(φ1(αi, βi) + φ2(γi, δi)) + 3�2
i ]

+ 3[fi+1φ1(αi, βi) − fiφ2(γi, δi)][2hiφ1(αi, βi)φ2(γi, δi) − 3fi+1φ1(αi, βi) + 3fiφ2(γi, δi)]
+ 4hi[fi+1φ

3
1(αi, βi) − fiφ

3
2(γi, δi)] − h2

i φ
2
1(αi, βi)φ

2
2(γi, δi) ≥ 0, (8)

where

φ1(αi, βi) = p′
i(0), φ2(γi, δi) = p′

i(1).

The constraints on the free parameters can be derived from both Equations (6) and (7). But
Equation (7) involves a lot of computation, thus Equation (6) is a reasonable choice. Thus, the
above discussion can be summarized as follows:
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42 M. Sarfraz et al.

Theorem 1 The piecewise rational cubic interpolant S(x), defined over the interval [a, b], in (3),
is positive if the following sufficient conditions are satisfied:

αi > 1.5, δi > 1.5,

βi > Max

{
0, −αihidi

fi

}
,

γi > Max

{
0,

δihidi+1

fi+1

}
.

Remark 1 The constraints on the shape parameters can be rearranged as follows:

αi > 1.5, δi > 1.5,

βi = li + Max

{
0, −αihidi

fi

}
, li > 0,

γi = mi + Max

{
0,

δihidi+1

fi+1

}
, mi > 0.

The parameters βi’s and γi’s are meant for the shape-preserving constraints, whereas the
parameters αi’s and δi’s are meant for shape control to enhance the curve shape further.

3.1 Demonstration

In this section, we illustrate the positivity-preserving scheme developed in Section 3 through
numerical examples. Let us take the positive data given in Table 1, collected in a chemical
experiment, where the x-values are the temperature code and the f -values are the molal volume of
the gas in l/mole by the ideal gas law. Figure 5 is produced from the rational cubic function (3) for
the value of free parameters αi = δi = 1 and βi = γi = 2. For these values of the free parameters,
the rational cubic function (3) reduces to the standard cubic Hermite spline. From Figure 5, it is
clear that the cubic Hermite spline failed to preserve the positive shape of the data. Figure 6 is

Figure 5. The cubic Hermite spline.
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International Journal of Computer Mathematics 43

Figure 6. The positive rational cubic function with αi = 1.6 and δi = 1.6.

produced by implementing Theorem 1 on the positive data given in Table 1 with αi = δi = 1.6
and li = mi = 0.1. In Figure 6, the shape of the positive data has been preserved in a visually
pleasing way.

4. Constrained curve interpolation

This section generalizes the curve scheme developed in Section 3 for positive data. It assumes
that the data may lie, not just over the line y = 0, over any arbitrary line y = mx + c. Thus, the
freedom of the shape parameters, in the description of the rational cubic spline in Section 2,
would be utilized to achieve the interpolating curve when data are under consideration over an
arbitrary line y = mx + c. Similar to that done in Section 3, the desired curve would be achieved
by constraining two shape parameters. The other two parameters would be kept free for shape
control to enhance the constrained curve further if needed.

Let {(xi, fi), i = 0, 1, 2, . . . , n} be the given set of data points lying above the straight line y =
mx + c, that is,

fi > mxi + c, ∀i = 0, 1, 2, . . . , n.

The curve will lie above the straight line if the rational cubic function (3) satisfies the following
condition:

S(x) > mx + c, ∀x ∈ [x0, xn]. (9)

For each subinterval Ii = [xi, xi+1], the above relation can be expressed as follows:

Si(x) = pi(θ)

qi(θ)
> ai(1 − θ) + biθ , (10)

where ai(1 − θ) + biθ is the parametric equation of the straight line with ai = mxi + c and bi =
mxi+1 + c. Multiplying both sides of Equation (10) with qi(θ) by assuming that αi > 0, βi > 0,
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44 M. Sarfraz et al.

γi > 0 and δi > 0 and after some rearrangement, Equation (10) reduces to

Ui(θ) =
4∑

i=0

(1 − θ)4−iθ iBi, (11)

where

B0 = αi(fi − ai),

B1 = (αi + βi)(fi − ai) + αihidi + αifi − αibi,

B2 = (αi + βi)fi + αihidi − (αi + βi)bi + (γi + δi)fi+1 − δihidi+1 − (γi + δi)ai,

B3 = (γi + δi)(fi+1 − bi) − δihidi+1 + δifi+1 − δiai,

B4 = δi(fi+1 − ai).

Ui(θ) > 0 if

Bi > 0, i = 0, 1, 2, 3, 4.

Bi > 0, i = 0, 1, 2, 3, 4, if

αi > 0, δi > 0,

βi > Max

{
0, −αi(hidi + fi − bi)

fi − ai

}
,

γi > Max

{
0, −δi(−hidi+1 + fi+1 − ai)

fi+1 − bi

}
.

The above can be summarized as follows:

Theorem 2 The piecewise rational cubic interpolant S(x), defined over the interval [a, b], in (3),
is positive if the following sufficient conditions are satisfied:

αi > 0, δi > 0,

βi > Max

{
0, −αi(hidi + fi − bi)

fi − ai

}
,

γi > Max

{
0, −δi(−hidi+1 + fi+1 − ai)

fi+1 − bi

}
.

Remark 2 The constraints on the shape parameters can be rearranged as follows:

αi > 0, δi > 0,

βi = ri + Max

{
0, −αi(hidi + fi − bi)

fi − ai

}
,

γi = si + Max

{
0, −δi(−hidi+1 + fi+1 − ai)

fi+1 − bi

}
.

The parameters βi’s and γi’s are meant for the shape-preserving constraints, whereas the
parameters αi’s and δi’s are meant for shape control to enhance the curve shape further.
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International Journal of Computer Mathematics 45

Table 2. Data set above the straight line y = x/2 + 1.

x 2 3 7 8 9 13 14

f 12 4.5 6.5 12 7.5 9.5 18

4.1 Demonstration

Consider the data set given in Table 2, which is lying above the straight line y = x/2 + 1.
Obviously, the interpolating curve to the data given in Table 2 should lie above the straight
line y = x/2 + 1. But the cubic Hermite does not assure this behaviour, as shown in Figure 7. In
other words, the cubic Hermite does not preserve the shape of the data lying above the straight
line. This flaw is recovered nicely in Figure 8 by implementing Theorem 2 in the data given in
Table 2 with αi = δi = 0.05 and ri = si = 0.1.

Figure 7. The cubic Hermite spline.

Figure 8. The rational cubic function with αi = δi = 0.05 and ri = si = 0.1.
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46 M. Sarfraz et al.

5. Monotone curve interpolation

This section introduces the monotone curve scheme for monotone data. As the rational cubic
spline, discussed in Section 2, carries four shape parameters in its description, it is a luxury
freedom. This freedom can be utilized to achieve the monotony of the data-interpolating curve
when monotone data are under consideration. This section is dedicated to orient the rational cubic
spline, discussed in Section 2, to make it produce a monotone curve. The monotone curve would be
achieved by constraining the shape parameters. The objective would be to utilize two parameters
for the monotony-preserving constraints, while the other two parameters would be kept free for
shape control to enhance the monotone curve further if needed.

Let {(xi, fi), i = 0, 1, 2, . . . , n} be the monotone data defined over the interval [a, b] such that

fi < fi+1, �i = fi+1 − fi
hi

> 0, di > 0, i = 0, 1, 2, . . . , n − 1.

The piecewise rational cubic function (3) preserves monotony if

S(1)
i (x) > 0, i = 0, 1, 2, . . . , n − 1,

where

S(1)
i (x) =

∑5
i=0(1 − θ)5−iθ iCi

(qi(θ))2
, (12)

C0 = α2
i di,

C1 = 2αi(γi + δi)�i − 2αiδidi+1 + α2
i di,

C2 = (βiγi + βiδi + 3αiγi + 6αiδi)�i − δi(βi + 3αi)di+1 − (γi + δi)αidi,

C3 = (βiγi + αiγi + 3βiδi + 6αiδi)�i − δi(αi + βi)di+1 − (3δi + γi)αidi,

C4 = 2δi(αi + βi)�i − 2αiδidi + δ2
i di+1,

C5 = δ2
i di+1.

From Equation (12), S(1)
i (x) > 0 if

Ci > 0, i = 0, 1, 2, 3, 4, 5.

Moreover, Ci > 0, i = 0, 1, 2, 3, 4, 5, if

γi >
δidi+1

�i
,

βi >
αidi

�i
.

The above can be summarized as follows:

Theorem 3 The piecewise rational cubic interpolant S(x), defined over the interval [a, b], in (3),
is monotone if the following sufficient conditions are satisfied:

αi > 0, δi > 0,

βi > Max

{
0,

αidi

�i

}
,

γi > Max

{
0,

δidi+1

�i

}
.
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Table 3. Monotone radiochemical data.

x 7.99 8.09 8.19 8.7 9.2 10 12 15 20

f 0 0.276429e−2 0.437498e−3 0.169183 0.469428 0.943740 0.998636 0.999919 0.999994

Figure 9. The cubic Hermite spline.

Remark 3 The constraints on the shape parameters can be rearranged as follows:

αi > 0, δi > 0,

βi = ni + Max

{
0,

αidi

�i

}
, ni > 0,

γi = oi + Max

{
0,

δidi+1

�i

}
, oi > 0.

The parameters βi’s and γi’s are meant for the shape-preserving constraints, whereas the
parameters αi’s and δi’s are meant for shape control to enhance the curve shape further.

5.1 Demonstration

The monotone radiochemical data given in Table 3 are taken from [12]. A non-monotone curve
from the monotone data given in Table 3 is produced in Figure 9 by using the cubic Hermite
spline. To overcome this remedy, in Figure 10, the monotonicity-preserving scheme proposed in
Theorem 3 is implemented on the monotone data given in Table 3. The values assigned to the
free parameters are as follows: αi = δi = 2 and ni = oi = 1.9. From Figure 10, it is clear that the
shape of the monotone data given in Table 3 has been preserved.

6. Convex curve interpolation

This section introduces the convexity-preserving curve scheme for convex data. As the rational
cubic spline, discussed in Section 2, carries four shape parameters in its description, it is a luxury
freedom. This freedom can be utilized to achieve the convexity of the data-interpolating curve
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48 M. Sarfraz et al.

Figure 10. The rational cubic function with αi = δi = 2 and ni = oi = 1.9.

when convex data are under consideration. This section is dedicated to orient the rational cubic
spline, discussed in Section 2, to make it produce a convex curve. The convex curve would be
achieved by constraining the shape parameters. The objective would be to utilize two parameters
for the convexity-preserving constraints, while the other two parameters would be kept free for
shape control to enhance the convex curve further if needed.

Let {(xi, fi), i = 0, 1, 2, . . . , n} be the convex data defined over the interval [a, b] such that

�i < �i+1, di < di+1, i = 0, 1, 2, . . . , n − 1.

The piecewise rational cubic function (3) preserves convexity if

S(2)
i (x) > 0, i = 0, 1, 2, . . . , n − 1,

where

S(2)
i (x) =

∑7
i=0(1 − θ)7−iθ iDi

hi(qi(θ))3
, (13)

where

D0 = αiC1 − (αi + 2βi)C0,

D1 = 2αiC2 + (αi − βi)C1 + (−αi − βi − 4γi − 4δi)C0,

D2 = 3αiC3 + 3αiC2 + (−3γi − 3δi)C1 + (−3γi − 9δi)C0,

D3 = 4αiC4 + (5αi + βi)C3 + (αi + βi − 2γi − 2δi)C2 + (−2γi − 7δi)C1,

D4 = (7αi + 2βi)C4 + (2αi + 2βi − γi − δi)C3 + (−γi − 5δi)C2 − 4δiC1,

D5 = (9αi + 3βi)C5 + (3αi + 3βi)C4 − 3δiC3 − 3δiC2,

D6 = (γi + δi + 4αi + 4βi)C5 + (γi − δi)C4 − 2δiC3,

D7 = (δi + 2γi)C5 − δiC4.

S(2)
i (x) > 0 if

(qi(θ))3 > 0, Di > 0, i = 0, 1, 2, . . . , 7.
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(qi(θ))3 > 0 if

αi > 0, βi > 0, γi > 0, δi > 0.

Di > 0, i = 0, 1, 2, . . . , 7, if

αi > 0, βi > 0, δi > 0,

γi = βi,

γi > Max

{
0,

δi(di+1 − �i)

�i − di
,
αi(�i − di)

di+1 − �i

}
.

The above can be summarized as follows:

Theorem 4 The piecewise rational cubic interpolant S(x), defined over the interval [a, b], in (3),
is convex if the following sufficient conditions are satisfied:

αi > 0, βi > 0, δi > 0,

γi = βi,

γi > Max

{
0,

δi(di+1 − �i)

�i − di
,
αi(�i − di)

di+1 − �i

}
.

Remark 4 The constraints on the shape parameters can be rearranged as follows:

αi > 0, βi > 0, δi > 0,

γi = βi,

γi = ki + Max

{
0,

δi(di+1 − �i)

�i − di
,
αi(�i − di)

di+1 − �i

}
, ki > 0.

The parameters γi’s are meant for the shape-preserving constraints, whereas the parameters αi’s,
βi’s and δi’s are meant for shape control to enhance the curve shape further.

6.1 Demonstration

To demonstrate the convexity-preserving scheme developed in Section 6, let us consider the data
set given in Table 4.

In Figure 11, we have implemented the cubic Hermite spline on the convex data given in Table 4.
The non-convex curve shown in Figure 11 clearly indicates that the cubic Hermite spline failed to
preserve the convex shape of the data. To demonstrate the usefulness of the convexity-preserving
scheme developed in Section 6, Theorem 4 is implemented on the convex data given in Table 4
with αi = δi = 0.4 and ki = 0.1. From Figure 12, it is clear that the shape of the convex data given
in Table 4 is preserved smoothly.

Table 4. Convex data set.

x −4.0 −3.5 −2.0 0 2.0 3.5 4.0

f 5.0 0 −3.5 −4.0 3.5 0 5
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50 M. Sarfraz et al.

Figure 11. The cubic Hermite spline.

Figure 12. The rational cubic function with αi = δi = 0.4 and ki = 0.1.

7. Error estimation of interpolation

In this section, we estimate the approximation error that occurs when the rational cubic function (3)
is used to interpolate data from an arbitrary function, that is, f (x) ∈ C3[x0, xn]. The interpolation
scheme is local, so we shall investigate the error in each subinterval Ii = [xi, xi+1] without loss
of generality. The Peano Kernel theorem [18] is used to estimate the error in each subinterval
Ii = [xi, xi+1] as follows:

R[f ] = f (x) − S(x) = 1

2

∫ xi+1

xi

f (3)(τ )Rx[(x − τ)2
+]dτ . (14)

Using the uniform norm, Equation (14) becomes

|f (x) − P(x)| ≤ 1

2
‖f (3)(τ )‖

∫ xi+1

xi

|Rx[(x − τ)2
+]|dτ , (15)
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where

Rx[(x − τ)2
+] =

{
r(τ , x), xi < τ < x

s(τ , x), x < τ < xi+1

is called the Peano Kernel:

r(τ , x) = (x − τ)2 − 1

qi(θ)
[(xi+1 − τ)2{(1 − θ)θ2(γi + δi) + θ3δi}

− 2δihi(xi+1 − τ)(1 − θ)θ2], (16)

s(τ , x) = − 1

qi(θ)
[(xi+1 − τ)2{(1 − θ)θ2(γi + δi) + θ3δi} − 2δihi(xi+1 − τ)(1 − θ)θ2]. (17)

In Equation (15),
∫ xi+1

xi
|Rx[(x − τ)2+]|dτ can be expressed as follows:∫ xi+1

xi

|Rx[(x − τ)2
+]|dτ =

∫ x

xi

|r(τ , x)|dτ +
∫ xi+1

x
|s(τ , x)|dτ .

For 0 < δi/γi < 1, the roots of r(x, x) in [0,1] are θ = 0, θ = 1 and θ = 1 − δi/γi. For δi/γi > 1,
the roots of r(x, x) in [0,1] are θ = 0 and θ = 1.

The roots of r(τ , x) = 0 are

τi = x − hiθ(G + (−1)i+1H)

αi + βiθ
, i = 1, 2,

where

G = γiθ ,

H =
√

αi(γi − δi) + {βi(γi − δi) − γiαi}θ + (γ 2
i − γiβi)θ2.

The root of s(τ , x) = 0 are

τ3 = xi+1 − 2δihi(1 − θ)

(γi + δi) − γiθ
, τ4 = xi+1.

Case 1 For δi/γi > 1, Equation (15) takes the form

|f (x) − S(x) ≤ 1

2
‖f (3)(τ )‖h3

i ω1(αi, βi, γi, δi, θ),

ω1(αi, βi, γi, δi, θ) =
∫ x

xi

|r(τ , x)|dτ +
∫ xi+1

x
|s(τ , x)|dτ

= −
∫ τ1

xi

r(τ , x)dτ +
∫ τ2

τ1

r(τ , x)dτ −
∫ x

τ2

r(τ , x)dτ

−
∫ τ3

x
s(τ , x)dτ +

∫ xi+1

τ3

s(τ , x)dτ

= (1 − θ)2θ3{γi − δi − (αi + βiθ)}
qi(θ)

+ 2(1 − θ)2θ3{6G2H + 2H3}
3qi(θ)(αi + βiθ)2

− 8(1 − θ)2θ4γiGH

qi(θ)(αi + βiθ)2
− 2(1 − θ)2θ3{(γi − δi) − γiθ}H

(αi + βiθ)

+ 8(1 − θ)3θ2δ3
i {(1 − θ)γi + δi}

qi(θ)(γi(1 − θ) + δiθ)3
.
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Case 2 For 0 < δi/γi < 1 and 0 < θ < θ∗, Equation (15) takes the form

|f (x) − S(x)| ≤ 1
2‖f (3)(τ )‖h3

i ω2(αi, βi, γi, δi, θ),

ω2(αi, βi, γi, δi, θ) =
∫ x

xi

|r(τ , x)|dτ +
∫ xi+1

x
|s(τ , x)|dτ

=
∫ τ1

xi

r(τ , t)dτ −
∫ x

τ1

r(τ , t) dτ +
∫ τ3

x
s(τ , t)dτ −

∫ xi+1

τ3

s(τ , t)dτ

= −2(1 − θ)2θ3(G + H)3

3qi(θ)(αi + βiθ)2
+ 2(1 − θ)2θ4{6G2H + 2H3}

3qi(θ)

− 8(1 − θ)2θ4γiGH

qi(θ)(αi + βiθ)2
− 4(1 − θ)2θ2{(γi − δi) − γiθ}H

(αi + βiθ)

− (1 − θ)3θ2{(γi + 2δi)θ − γi}
qi(θ)

− 8(1 − θ)3θ2δ3
i {(1 − θ)γi + δi}

qi(θ)(γi(1 − θ) + δiθ)3
.

Case 3 For 0 < δi/γi < 1 and θ∗ < θ < 1, Equation (15) takes the form

|f (x) − S(x)| ≤ 1
2‖f (3)(τ )‖h3

i ω3(αi, βi, γi, δi, θ),

ω3(αi, βi, γi, δi, θ) =
∫ x

xi

|r(τ , x)|dτ +
∫ xi+1

x
|s(τ , x)|dτ

=
∫ τ1

xi

r(τ , x) dτ −
∫ τ2

τ1

r(τ , x)dτ +
∫ x

τ2

r(τ , x)dτ +
∫ τ3

x
s(τ , x)dτ

−
∫ xi+1

τ3

s(τ , x)dτ

= −ω1(αi, βi, γi, δi, θ).

The above can be summarized as follows:

Theorem 5 The error of the rational cubic function (3), for f (x) ∈ C3[x0, xn], in each subinterval
[xi, xi+1] is

|f (x) − S(x)| ≤ 1
2‖f (3)(τ )‖h3

i ci,

ci = max
0≤θ≤1

ω(αi, βi, γi, δi, θ),

ω(αi, βi, γi, δi, θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max ω1(αi, βi, γi, δi, θ),
δi

γi
> 1,

max ω2(αi, βi, γi, δi, θ), 0 <
δi

γi
< 1, 0 < θ < θ∗,

max ω3(αi, βi, γi, δi, θ), 0 < δi
γi

< 1, θ∗ < θ < 1.

8. Conclusion

A C1 piecewise rational cubic function has been developed to preserve the shape of positive,
monotone and convex data. The developed C1 interpolant involves four free parameters in its con-
struction. Data-dependent sufficient constraints have been developed on two of the free parameters
to preserve the shape of the data (positive, monotone and convex), while the other two free
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parameters have been utilized to refine the shape of the curve at the user’s wish. The derivatives
have been approximated by the three-point difference approximation formula (arithmetic mean
choice) of derivatives. However, these derivatives can be approximated by another means. The
choice of the derivative approximation scheme has not affected the shape-preserving interpola-
tion scheme developed in this paper. The proposed curve schemes have been implemented on the
practical data sets and have been proved worthy. The order of approximation is O(h3

i ).
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